Oregon State Highway Department

W. C. WILLIAMS, State Highway Engineer

A Study of
One-Way Street Routings on Urban Highways in Oregon

Prepared by
TRAFFIC ENGINEERING DIVISION
PLANNING SURVEY SECTION

Survey conducted in cooperation with the
U. S. Deparment of Commerce

Bureau of Public Roads

Published by
Oregon State Highway Commission
SALEM
M. K. McIVER, Chairman

ROBERT B. CHESSMAN, Commissioner KENNETH N. FRIDLEY, Commissioner

LIST OF ILLUSTRATIONS

Figure Title Page
Frontispiece Location of Cities With One-Way Couplets Studied inThis Report2
1 Comparison of Travel Time Before and After One-Way Couplets 16
2 Comparison of Accident Rates Before and After One- Way Couplets 17
3 Highway Routing Through Astoria 25
4 Aerial View of Astoria 25
5 Accident Rates-Astoria 27
6 Highway Routing Through Coos Bay 31
7 Aerial View of Coos Bay 31
8 Accident Rates-Coos Bay 33
9 Highway Routing Through Corvallis 37
10 Aerial View of Corvallis 37
11 Accident Rates-Corvallis 39
12 Highway Routing Through Eugene 43
13 Aerial View of Eugene 43
14 Accident Rates-Eugene 45
15 Highway Routing Through Lebanon 49
16 Aerial View of Lebanon 49
17 Accident Rates-Lebanon 51
18 Highway Routing Through Medford 55
19 Aerial View of Medford 55
20 Accident Rates-Medford 57
21 Highway Routing Through Pendleton 61
22 Aerial View of Pendleton 61
23 Accident Rates--Pendleton 63
24 Highway Routing Through Redmond 67
25 Aerial View of Redmond 67
26 Accident Rates-Redmond 69
27 Highway Routing Through Salem 73
28 Aerial View of Salem 73
29 Accident Rates-Salem 75
30 Highway Routing Through Springfield 79
31 Aerial View of Springfield 79
32 Accident Rates-Springfield 81
33 Highway Routing Through The Dalles 85
Aerial View of The Dalles 85
Accident Rates-The Dalles 87
Highway Routing Through Tillamook 91
Aerial View of Tillamook 91
Accident Rates-Tillamook 93

LIST OF TABLES

Table Titie Page
I Comparison of Travel Time and Accident Data 15
II Comparison of Accident Severity and Cost Data 18
III Summary of Accident Rates by Collision Type for Six Selected Cities 20
IV Summary of Accident Data-Astoria 26
V Accident Listing-Astoria 28
VI Summary of Accident Data-Coos Bay 32
VII Accident Listing-Coos Bay 34
VIII Summary of Accident Data-Corvallis 38
IX Accident Listing-Corvallis 40
X Summary of Accident Data-Eugene 44
XI Accident Listing-Eugene 46
XII Summary of Accident Data-Lebanon 50
XIII Accident Listing-Lebanon 52
XIV Summary of Accident Data-Medford 56
XV Accident Listing-Medford 58
XVI Summary of Accident Data-Pendleton 62
XVII Accident Listing-Pendleton 64
XVIII Summary of Accident Data-Redmond 68
XIX Accident Listing-Redmond 70
XX Summary of Accident Data-Salem 74
XXI Accident Listing-Salem 76
XXII Summary of Accident Data-Springfield 80
XXIII Accident Listing-Springfield 82
XXIV Summary of Accident Data-The Dalles 86
XXV Accident Listing-The Dalles 88
XXVI Summary of Accident Data-Tillamook 92
XXVII Accident Listing-Tillamook 94

GLOSSARY

Accident (or Collision): A reported motor vehicle traffic accident which results in death, injury or property damage.

Accident Rate: The number of accidents per million vehicle miles.
Accident Cost Rate: The cost of accidents in dollars per million vehicle miles.
Accident Severity Rate: The number of personal injuries and fatalities per hundred million vehicle miles.

Arterial Street (or Highway): A general term designating a major highway, usually on a continuous or through route; includes through streets and freeways as separately defined below.

Average Daily Traffic (ADT): The number of vehicles passing a designated point during 24 hours of an average of the seven days of the week generally for the 52 weeks of the year, but such would also be applicable to any other specified period.

By-Pass Route: A highway intended to divert through traffic from a particular area by going around (or passing by) the area.
Capacity, Practical: The maximum number of vehicles that can pass a given point on a roadway or in a designated lane during one hour without the traffic density being so great as to cause unreasonable delay, hazard, or restriction to the drivers' freedom to maneuver under the prevailing roadway and traffic conditions.
Casualty: Either a personal injury or a fatality resulting from an accident.
Central Business District (CBD): That portion of a city comprising the over-all area of business concentration.
Expressway: A divided arterial highway for through traffic with full or partial control of access and generally with grade separations at intersections.
Fatality: Any death resulting from an accident within six months of the accident.
Freeway: An arterial divided highway with full control of access, no parking and no crossing movements at grade.
One-Way Couplet: A pair of one-way streets on which traffic moving in one direction is normally separated from that in the opposite direction on the other street by one city block.
Personal Injury: Any injury suffered by a person in an accident that requires treatment by a practitioner of medicine at some time within six months of accident. An injury is classed as an accident injury regardless of whether treatment was actually received.
Property Damage: Damage to or destruction of any property as the immediate and direct result of an accident. It does not include loss of human life or personal injury.

Through Street: Every street or portion thereof at the entrance to which vehicular traffic from intersecting streets is required by law to stop before entering or crossing.
Travel Time: The time of travel, including stops and delays except those off the traveled way.
Vehicle Mile: A quantitative measure of the amount of travel on a given section, and in all cases is computed by multiplying the average daily traffic for the section by its length.

SUMMARY OF FINDINGS

1. Travel time decreased on each of the five highway sections for which travel time data were available after one-way couplets were established. The amount of this reduction varied from 5.8 to 39.9 percent, which values correspond to travel time savings ranging from 0.1 to 1.5 minutes.
2. Accident rate (accidents per million vehicle miles) reductions were observed in the cities of Coos Bay: Corvallis, Eugene, Lebanon, Redmond, Springfield and The Dalles after one-way couplets were established. The reductions ranged from 18.2 to 56.3 percent.
3. Accident rates in the cities of Astoria, Pendleton, Salem and Tillamook remained substantially unchanged after one-way couplets were established.
4. Accident severity rate (casualties per hundred million vehicle miles) reductions were observed in the cities of Coos Bay, Medford, Salem, Springfield and The Dalles after one-way couplets were established. The reductions ranged from 26.7 to 53.7 percent.
5. Accident severity rates in the cities of Astoria, Corvallis, Eugene, Lebanon, Pendleton, Redmond and Tillamook remained substantially unchanged after one-way couplets were established.
6. The accident cost rate (dollars per million vehicle miles) decreased on nine of the 12 highway sections studied after one-way couplets were established. The decrease ranged from 2.5 to 63.0 percent. Increases in the accident cost rate occurred in three cities and ranged from 20.4 to 59.2 percent.
7. The accident cost rate for all cities averaged $\$ 12,000$ per million vehicle miles in the "before" period while in the "after" period the accident cost rate averaged $\$ 9,000$ showing a reduction of 25 percent.
8. Rear-end, turning and pedestrian accident rates at intersections were reduced after one-way couplets were established. Other intersectional accident types remained substantially unchanged. The overall intersectional accident rate showed a 26.4 percent reduction.
9. Rear-end, turning, pedestrian, sideswipe meeting, parking and backing accident rates between intersections were reduced after one-way couplets were established. Other non-intersectional accident type rates remained substantially unchanged. The over-all non-intersectional accident rate showed a 42.5 percent reduction.

INTRODUCTION

In the case of a large number of the cities in Oregon, the State Highway routes penetrate the Central Business District of the city. In the main, the streets over which such highways are routed are narrow and, as the street is fronted by the major business establishments of the city, through moving traffic, as well as traffic turning off or onto the highway, is relatively heavy. As these volumes increase, congestion and accidents also increase to the point where some treatment increasing practical capacity and reducing congestion becomes imperative. Such treatment may consist of one or more of the following:

1. Construction of routes (freeway or other) through, adjacent to or bypassing cities and/or their Central Business Districts.
2. Street widening.
3. Prohibition of parking.
4. Establishment of one-way couplets.

To properly treat such a problem, it is necessary to either provide a facility which will attract a sufficient amount of traffic from the highway passing through the Central Business District, or to institute measures which will increase the practical capacity of the existing highway.

In cities which are major shopping centers, a by-pass route does not attract enough traffic from the existing highway route to alleviate the problem because a large percentage of the traffic is local in character and cannot be diverted to a by-pass route. In these cities it is necessary to consider the possibility of developing some facility for the common use of both through and local traffic.

With the relatively low traffic volumes encountered in cities with populations comparable to those included in this study, there is seldom a traffic volume warrant for a freeway or expressway even though such a facility in the Central Business District would certainly be a partial solution to the problem.

Widening the existing highway is generally not feasible due to the limited width of the highway right of way and excessive costs of obtaining more in most Central Business Districts.

Prohibition of parking on the highway route is not readily acceptable in the small city because of opposition on the part of local business groups. With parking space at a premium, it is difficult to put into operation any traffic plan involving the wholesale elimination of parking.

In such a situation, the development of a one-way street couplet has offered a solution possible of realization from a cost standpoint. and on the basis of experience had to date, one that gives a maximum return in increased capacity and accident reduction per dollar expended.

The one-way couplets included in this study are located in the following cities which are also shown on the Frontispiece.

1. Astoria
2. Eugene
3. Pendleton
4. Springfield
5. Coos Bay
6. Lebanon
7. Redmond
8. The Dalles
9. Corvallis
10. Medford
11. Salem
12. Tillamook

ANALYSIS

GENERAL

In order to compare traffic and accident data on a street system under different methods of traffic operation, it was necessary that the "before" and "after" periods be equal in duration. Furthermore, it was necessary to include the data for those streets which changed from low to high volume arterials by reason of the change in highway routing, as well as those portions of the original high volume streets which reverted to local service status and lower traffic volumes after the one-way couplet was established.

METHODS OF ANALYSIS

Before and after accident data were developed for each one-way couplet for comparative purposes. In all but three cities, namely Eugene, Medford and Salem, it was possible to obtain accident data for three-year periods before and after the establishment of the one-way couplets. In the instance of these three cities where this was not possible, accident data were prepared for one-year periods.

It is generally recognized that immediately after a new traffic measure is applied, motorists require a period of time to accustom themselves to the revised traffic pattern. During this period, it is logical to assume that the traffic and accident data do not reflect a normal situation.

In the course of this study, the accident data in four cities were analyzed by statistical methods in an effort to establish the time at which the accident experience became stable after the one-way couplet was established and the amount of variation between the observed and expected accident experience during this transition period. Based on these tests, there was no clear and definite time at which the accident experience becomes stable, nor was there positive evidence of significant variation in the accident experience.

For this report an arbitrary transition period of approximately six months was selected for each city. During this period all data were omitted from the study to preclude the possibility of using abnormal data.

The Chi-Square Test was used to determine the significance of the change in accident experience on the streets affected by the establishment of the one-way couplet. Chi-Square (x^{2}) is a numerical value resulting from a formula wherein the difference between the "before" total and the "after" total. and the size of each total are the main factors. This value is then compared against tabled values which, in effect, reveal the probability of the difference being due to chance.

If the probability that the difference in accident totals could have occurred by chance was six or more percent, it was said that the difference was not significant, or in other words, there was no change. On the other hand, if the chance element were present less than six percent of the time the difference was considered either highly significant or significant, depending on the size of the chance element. In these cases, it was said that there was an actual change in the accident experience.

Such a procedure has the advantage of taking the decision as to whether an increase or decrease in accident experience is significant out of the realm of opinion and placing it upon a factual basis. It was of particular value in cases where on the basis of percentage increase or decrease there appeared to be a significant difference.

A detailed explanation of the techniques used to determine statistical level of significance and
the meaning of the terms highly significant, significant and not significant in terms of probabilities is contained in the Appendix.

The cost of accidents was based on unit costs estimated by the National Safety Council(1) to be $\$ 21,800$ for each death, $\$ 950$ for each personal injury and $\$ 180$ for each property damage (only) accident.

Travel time was measured by a License Recording Study wherein stations were established at each end of the section in question, and the license number and time of passing for each vehicle were recorded. License numbers were then matched and the elapsed time between stations was computed. These data are available for five of the 12 one-way couplets studied.

Summary tabulations showing these data were prepared and will be discussed hereinafter.

Vehicle Miles

Table I is a summary of the pertinent traffic and accident data for each of the 12 one-way couplets included in this study. The number of vehicle miles increased in every city with the exception of Eugene and Medford. The reduction in total vehicle miles in these two cities was due to wartime travel restrictions. In other cities, the increase was attributable to the length of the highway routing added by new construction and/or traffic volume increases resulting from both normal growth and diversion from other streets.

In some cities such as Redmond and The Dalles, the diversion was apparently considerable, probably because congestion on the original route was such that motorists used other streets which were more desirable than the original but less desirable than that offered by the one-way couplet.
(5) 1951 National Satety Council Release.

TABLE 1
COMPARISON OF TRAVEL TIME AND ACCIDENT DATA

			$\begin{gathered} \text { Tornd } \\ \text { Wehicle גiles } \end{gathered}$			$\begin{gathered} \text { Trnvel } \\ \text { Thme } \end{gathered}$			JoulalModulente			$\begin{gathered} \text { Tugident } \\ \text { Futat } \end{gathered}$		
chy		$\frac{\operatorname{situr}}{(\mathrm{x}+4,\}}$		(1.8000 ${ }^{\text {Afer }}$	${ }_{\text {cose }}^{\text {Cinalle }}$	-	${ }_{\text {A Mricer }}$		Metore	Athor			${ }_{\text {(Per mer mix }}^{\text {Ater }}$	${ }_{\substack{\text { chanet } \\(\text { F\% })}}$
Astoria	3	3	4,575	4,926	+ 7.7	(1)	0	283	262	-7.4	81.85	53.18	-14.0 ¢
Coos Bay	3	3	8,198	13,622	$+66.2$	T	5	409	297	-27.4	49.89	21.80	$-56.3{ }^{(3)}$
Corvallis	3	3	10,914	12,521	+14.7	3.78	3.56	-0.22	530	395	-25.5	48.56	31.17	-35.80
Eugene	1	1	5.567	4,101	-26.3	8.06	6.54	-1.52	408	153	-62.5	73.29	37.31	-49.13
Lebanon	3	3	4,726	6,796	+ 43.8	1.86	1.76	-0.10	226	266	+17.7	47.82	39.14	-18.20
Mediord	1	1	9,720	9,079	6.6	(L)	[....	163	84	-48.5	16.77	9.25	-44.8 ©
Pendleton	3	3	8,663	10,169	+17.4	3.75	3.20	-0.55	385	490	$+27.3$	44.44	48.19	$+8.4{ }^{\text {2 }}$
Redmond	3	3	5,097	9,168	+ 79.9	(1)	(1)	\ldots	155	164	+ 5.8	30.41	17.89	-41.2 (c)
Salem .--........	1	1	22,801	23,766	+ 4.2	\%	11	\ldots	1,005	1,000	-0.5	44.08	42.08	-4.50
Springfield	3	3	22,598	27,024	$+19.6$	(1)	(1)	\ldots	602	431	-28.4	28.64	15.95	- 40.1 (3)
The Dalles	3	3	7,306	15,042	+105.9	F	D	...---	380	522	$+37.4$	52.01	34.70	-33.33
Tillamook	3	3	5,047	5,948	+ 17.9	3.56	2.14	-1.42	209	231	$+10.5$	41.41	38.84	-6.20
TOTALS OR A	ERAG		115,212	142,162	$+23.4$				4.755	4,295	-9.7	41.27	30.21	-26.8

[^0]
Accident Rates

Total accidents are not as meaningful as the accident rates which take into account the vehicle miles of travel. For example, the total accidents of the Second-Third Street One-Way Couplet in The Dalles increased 37.4 percent, but total vehicle miles increased 105.9 percent, and as a consequence the accident rate showed a decrease of 33.3 percent. Total accidents decreased on five of the one-way couplets, whereas the accident rate decreased on 11 of the 12 one-way couplets.

Analysis revealed that the reduction in accident rate was highly significant in seven cases, significant in one case and not significant in three cases. The increase in accident rate in Pendleton was found to be not significant. These findings indicated that the accident rate normally decreases after the establishment of a one-way couplet.

The "before" and "after" accident rates for each of the one-way couplets are shown graphically in Figure 2.

Figure 2

Accident Severity Rates

Table II shows a summary of the accident severity and accident cost data．The column headed ＂casualties＂shows the actual number of persons injured and killed．

In six cities there were more casualties during the＂after＂period．As shown previously，vehicle miles of travel on nine of the 12 one－way couplets studied also showed an increase during the same period．In general，vehicle miles of travel increased at a faster rate than casualties and as a result a higher accident severity rate was observed in only three cities after the one－way couplets were estab－ lished．

Analysis revealed that the accident severity rate increases in these three cities were not signifi－ cant．Reductions in the accident severity rate were observed in nine cities．The reduction was highly significant in three cities，significant in two cities and not significant in four cities．This indicated that the accident severity rate normally remains the same or decreases after the establishment of a one－way couplet．

Accident Cost Rates

Table II shows that the accident cost rates for nine of the 12 one－way couplets studied decreased after the one－way couplets were established．The unusually high increase in Medford was largely due to one accident wherein two persons were killed．These cases show that the accident cost rate can be re－ duced by the establishment of a one－way couplet．These data further illustrate that substantial savings to motor vehicle users can be realized after the establishment of a one－way couplet through the reduction of the accident cost rate．

TABLE II
COMPARISON OF ACCIDENT SEVERITY AND COST DATA

	Frerforl ofStuay		Cuspartient．						or All Aceldintits					ArcjekeltC＇rat Rytal C＇nat Ryta		
cics	 （Y） $\mathrm{b}, 1$		Setare	atter	\qquad			$\underset{(F F)}{\text { Chanter }}$		Berore SDeliats		After Hollarm	$\underset{\left(\sigma_{60}\right)}{C_{\text {Change }}}$	Ruffre Gollure per miva）		$\underset{(\%) \cdot}{\text { cbanqe }}$
Astoria	3	3	29	38	$\div 8$	633.88	771.36	± 21.78	\＄	73，450	\＄	77.140	$+5.0$	\＄16，055	\＄15，659	-2.5
Coos Bay ．．	3	3	39	30	-9	475.71	220.24	-53.78		126，480		77，820	-38.5	15，428	5，713	-63.0
Corvallis	3	3	54	63	$\div 9$	494.78	497.19	＋ 0.3 主		139，140		121，770	-12.5	12，749	9，610	-24.6
Eugene ．．．．	1	1	44	19	-25	790.37	463.35	$-41.4{ }^{\text {咢 }}$		109，120		42，170	－61．4	19，601	10，284	-47.5
Lebanon ．－	3	3	21	23	$\div 2$	444.35	338.43	-23.83		78，600		66，130	－15．9	16，631	9，731	-41.5
Medford	1	1	22	96：	-13	226.34	99.13	-56.2 （1）		47，360		64，290	$+35.7$	4，872	7，081	＋45．3
Pendleton	3	3	39	44	$\div 5$	450.21	432.71	-3.93		101，130		144，190	$+42.6$	11，674	14，180	$+21.5$
Redmond．	3	3	15	22	＋ 7	294.28	239.97	$-18.5{ }^{2}$		40，170		68,390	$+70.3$	7，881	7，460	－5．3
Salem ．．．	1	1	130	99	－31	570.16	417.90	-26.70		286，040		260，370	-9.0	12，545	10，991	－12．4
Springfield	3	3	92	72	-20	407.12	266.43	-34.6 霥		203，290		135.180	-33.5	8，986	5，002	－44．4
The Dalles	3	3	35	35	0	479.03	232.68	－51．46		116，920		142，480	$+21.9$	16，002	9，472	-40.8
Tillamook	3	3	$\underline{15}$	34	＋19	297.20	571.69	＋92．4		49，170		69.740	＋41．8	9，742	11，726	$+20.4$
TOTALS OR AVERA	$\begin{aligned} & O R \\ & A G E S \end{aligned}$	§	535	488	－47	464.36	343.27	－26．1		1，370．870	\＄	269，670	-7.4	\＄11，899	\＄8，931	－24．9
if：Peranns intured and klled． 6．Nox significant． F．Highly significant． （6）Significant． （3）Includes two tatalities．																

Collision Types

An independent study of six selected cities was conducted to determine the type of accidents which were susceptible to reduction by one-way treatment. One-way couplets were established in these cities after 1950. Accident data for three years prior to the establishment of the one-way couplets were compared with the accident data for three years after the one-way couplets were established. Collision type accident rates in terms of accidents per million vehicle miles were computed and are shown in Table III.

The intersectional accident rate decreased from 18.36 to 13.52 accidents per million vehicle miles, a 26.4 percent reduction. All intersectional accident type rates, with the exception of the sideswipe overtaking and non-collision accident rates, showed either a reduction or no change. Highly significant reductions occurred in the rear-end, turning and pedestrian categories. Changes in the other types were not significant.

With respect to non-intersectional accident rates. it is seen that the over-all rate was reduced from 20.27 to 11.65 accidents per million vehicle miles, a 42.5 percent reduction. Except for the increase in the sideswipe overtaking accident rate, all non-intersectional accident type rates showed a reduction or no change. The reductions in the rear-end, sideswipe meeting, turning, parking, pedestrian and backing accident rates were highly significant. Other changes were not significant.

In the aggregate, the accident rate showed a reduction from 38.63 to 25.17 accidents per million vehicle miles, a 34.8 percent reduction.

There is a popular theory that one-way couplets are effective in substantially reducing intersectional accidents due to the decrease in possible points of conflict. This theory was well substantiated by this study. By contrast, very little emphasis has been placed on the value of one-way couplets insofar as the reduction of non-intersectional accidents is concerned. The finding that the non-intersectional accident rate showed a greater percentage reduction than did the intersectional accident rate was therefore considered important and deserving of considerable emphasis.
A) Astoria. Coos Bay. Redmond. Springtjeld. The Dalles. Tillamork.

TABLE III

SUMMARY OF ACCIDENT RATES ${ }^{1}$ BY COLLISION TYPE FOR SIX SELECTED CITIES

ASTORIA

General

Prior to the establishment of the one-way couplet in the City of Astoria, US30 and US101 were routed as shown in Figure 3. The streets comprising this highway routing varied in width from 44 to 48 feet. The streets later to become a part of the one-way couplet were Commercial and Bond Streets. The width of Commercial Street ranged from 44 feet near 14th Street to 34 feet near Eighth Street. Eighth Street was 34 feet wide. There were no traffic signals on any of these streets.

The Bond-Commercial Street One-Way Couplet was established July 21, 1953. As illustrated in Figures 3 and 4 , westbound traffic was routed over Bond Street and eastbound traffic was routed over sections of Eighth and Commercial Streets. Traffic signals at seven key intersections were put into operation on this date and the City of Astoria opened its one-way grid to traffic on the same day. The westbound leg of the highway couplet was 0.44 miles in length. and the over-all length of the eastbound leg was 0.48 miles.

For comparative purposes, the 36 -month period from July 1, 1950 to June 30, 1953, was selected for the "before" period, and the 36 -month period from May 1, 1954 to April 30, 1.957, was chosen for the "after" period. The traffic data for the ten-month interim period were not used because it was assumed that they would not reflect a normal situation due to the revised traffic pattern.

Traffic Data

Traffic volumes on Bond Street during the "before" period averaged 4,710 vehicles per day and ranged from a high of 7.700 west of Eighth Street to a low of 2,000 east of 14 th Street. Traffic volumes on Commercial Street averaged 4,805 vehicles per day, and ranged from a high of 6,500 near 11 th Street to a low of 3,400 near Eighth Street. The average daily traffic on Eighth Street between Bond and Commercial Streets was 1,460 vehicles. There were $4,575,020$ vehicle miles during the "before" period, and the average daily traffic for the three streets was 8,705 vehicles.

During the "after" period, traffic volumes on Bond Street averaged 4.630 vehicles per day and ranged from a high of 6,300 west of 14 th Street to a low of 4,400 near Eighth Street. On Commercial Street and Eighth Street, traffic volumes were somewhat higher averaging 5,130 vehicles per day, and varying from 5,700 west of 14 th Street on Commercial Street to 4,400 on Eighth Street. During the "after" period, the average daily traffic on the couplet was 9,370 vehicles, and vehicle miles of travel amounted to 4,926.355.

There were no travel time data available.

ACCIDENT LISTING

Bond-Commercial Street One.Way Couplet
Astoria

	1.OCATION Astoria	COLIISION TYPE													Cli.AS	IF.				REMARKS
			$\left.\begin{aligned} & 5 \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \\ & 9 \end{aligned} \right\rvert\,$					$\begin{gathered} \\ \\ \\ \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ 0 \\ 9 \\ 7 \\ 7 \\ 0 \\ 0 \\ 5 \\ 0 \\ 2 \end{gathered}$		$\begin{gathered} 5 \\ \cdots \\ \cdots \\ \sim \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$				$\begin{gathered} \vec{n} \\ \tilde{\omega} \\ \tilde{n} \\ \hline \end{gathered}$				$\begin{aligned} & \overrightarrow{0} \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & \omega \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
interisectional																				
	Refore	13	1	24	-	1	53	4	1	7	17	5	1	127	-	22	105	-	22	
	After	15	-	39	$=$	5	33	2	1	2	16	10	3	126	$=$	21	102	-	28.	
NON- INTERSECTIONAL																				
	Before	-	1	25	1	18	6	65	-	26	4	8	2	156	-	6	150		7	
	After	-	-	35	1	26	3	47	-	19	1	2	2	136	-	10	126	-	10	
ALI ACCIDENTS																				
Before After		13	2	49	1	19	59	69	1	33	21	13	3	283	-	28	255		29	
		15	-	74	1	31	36	49	1	21	17	12	5	262	-	34	228	-	38	
The before period includes all accidents which occurred during the period from July 1, 1950 to June 30,1953 between the termini of the one way couplet on those streets which were a part of US101 \& ES30 before the establishment of the one-way couplet and on those streets which later became a part of the one-way couplet. The after period includes all accidents which occurred after the establishment of the oneway couplet: during the period from May 1, 1954 to April 30, 1957 on the Coregoing sections.																				

COOS BAY

General

US101 was routed over Broadway in the City of Coos Bay as shown in Figure 6 before the Broadway-Bayshore Drive One-Way Couplet was established. The width of Broadway varied from 26 feet on the north to 40 feet on the south. Traffic signals existed at the intersections of Central, Anderson, and Curtiss Avenues with Broadway. Bayshore Drive, later to become a part of the one-way couplet, was only 0.30 miles in length and it was terminated by Market Avenue on the north and Curtiss Avenue on the south.

On November 7, 1951, the Broadway-Bayshore Drive One-Way Couplet was established. As shown in Figures 6 and 7 Broadway was designated a one-way southbound street, and Bayshore Drive was designated a one-way northbound street. The establishment of this one-way couplet necessitated the construction of the northerly portion of Bayshore Drive, and later the installation of a traffic signal at the intersection of Central Avenue and Bayshore Drive. The southbound leg of this couplet was 0.75 miles in length, and the northbound leg was 0.81 miles in length.

The 36 -month period from November 1, 1948 to October 31, 1951 was taken for the "before" period of study and the 36 -month period May 1, 1952 to April 30, 1955 was selected as the "after" period of study. It will be noted that the "after" period of study started about six months after the one-way couplet was established.

Traffic Data

During the "before" period, traffic volumes on Broadway averaged 9,320 vehicles per day and ranged from a high of 10,000 just south of Central Avenue to a low of 8,000 near Fir Avenue. The average daily traffic on Bayshore Drive was only 1,615 vehicles. In the aggregate, there were $8,198,264$ vehicle miles of travel during the "before" period and the average daily traffic for both streets combined was 9,980 vehicles.

During the "after" period, traffic volumes on Broadway averaged 8,130 vehicles per day, and ranged from a high of 8,700 just south of Central Avenue to a low of 8,000 at either end of Broadway. On Bayshore Drive, the average daily traffic was 7,830 vehicles. Traffic volumes on Bayshore Drive varied from a high of 9,500 vehicles per day just south of Central Avenue to a low of 7,000 near the north end of the couplet. During the "after" period, the average daily traffic on the couplet was 15,960 vehicles and vehicle miles of travel totaled $13,621,689$.

There were no travel time data available.

HIGHWAY ROUTE BEFORE AND AFTER ESTABLISHMENT OF ONE WAY COUPLET

Figure 6

TABLE VII

ACCIDENT LISTING

Broadway-Bayshore Drive One-Way Couplet
 Coos Bay

CORVALLIS

General

Prior to the establishment of the one-way couplet in the City of Corvallis, Van Buren and Third Streets served as the route for US99W as illustrated in Figure 9. Van Buren Street was 32 feet in width; and Third Street was 46 feet wide between Van Buren and Adams Street, 32 feet wide from Adams Street to the bridge over the Willamette River, which was 24 feet in width. The portions of these two streets studied were 1.19 miles in length.

The streets later to become a part of the one-way couplet were Harrison and Fourth Streets. Harrison Street was 46 feet in width throughout the 0.32 miles studied, Fourth Street was 32 feet wide except for the two-block section between Jackson and Madison Streets which was 54 feet wide. Fourth Street terminated at "C"Street, a point 0.67 miles south of Van Buren Street. There were no traffic signals on any of these four streets.

Fourth Street was extended south across the Willamette River to an intersection with Third Street during the summer of 1949. Then, on August 24, 1949, the Van Buren, Fourth-Harrison, Third Street One-Way Couplet as shown in Figures 9 and 10 was opened to traffic. Northbound motorists were directed over Third and Harrison Streets and southbound traffic was routed via Van Buren and Fourth Streets. On September 1, 1951, the widening of Fourth Street from 32 feet to 54 feet between Van Buren and Jackson Streets and Madison and Jefferson Streets was accomplished.

The southbound leg of this one-way couplet was 1.16 miles in length, and the northbound leg was 1.26 miles in length. Traffic signals at Van Buren, Monroe, Jefferson and "A" Street intersections with Third and Fourth Streets were put in operation on June 21, 1951. The traffic signals at the Madison Street intersections with Third and Fourth Streets were installed on September 15, 1952.

This couplet served as the route of US99W until September, 1954, when Harrison and Van Buren Streets were replaced by a one-way routing extending north on Third and Fourth Streets.

For comparative purposes, the 36 -month period from August 1, 1946, to July 31, 1949, was chosen for the "before" period. The "after" period was considered as being that period of time from September 1, 1949, which was about three months after the one-way couplet was established, to August 31, 1954. In order to obtain data for a three-year period after the one-way couplet was established, and before Harrison and Van Buren Streets were deleted from the one-way couplet, it was not possible to start the "after" period of study at a later date.

HIGHWAY ROUTE BEFORE AND AFTER ESTABLISHMENT OF ONE WAY COUPLET

City of Corvallis

Figure 9

TABLE IX

accident listing

Van Buren-Fourth-Harrison-Third Street One-Way Couplei
Corvallis

The before period includes all accidents which occurred during the period from August 1, 1946 to July 3I, 1949 between the termini of the one-way couplet on those streets which were a part of US99W before the establishment of the one-way couplet and on those streets which later became a part of the one-way couplet. The after period includes all accidents whicis accurred after the estabiishment of the one-way couplet during the period from September 1. 1951 to August 31 , 1954 on the foregoing sections and on newly constructed extensions.

EUGENE

'he routing of US99 in the City of Eugene was as shown in Figure 12 prior to the establishment Sixth-Seventh Avenue One-Way Couplet. There were four traffic signals at intersections on rette Street and one at the intersection of Broadway and Oak Street. Seventh Avenue, later to e a part of the one-way couplet, was terminated at Garfield Street.

The Sixth-Seventh Avenue One-Way Couplet was established on February 2, 1942, after Seventh ue was extended northward to an intersection with US99. As illustrated in Figures 12 and 13 , northd traffic was routed via High Street and Sixth Avenue, and Pearl Street and Seventh Avenue me the southbound routing. Each leg of this one-way couplet was 1.86 miles in length.

Because of the lengthy nature of the section and high traffic volumes, it was felt that the data a 12 -month period before the couplet was established and a like period of time after the couplet was blished would be adequate. Accordingly, the years 1941 and 1943 were used for comparative purposes. will be noted that the "after" period of study started 11 months after the one-way couplet was estab. red.

This one-way couplet was eventually extended eastward to Mill Street on September 1, 1951. At at time Mill Street, a four-lane divided facility, replaced High and Pearl Streets as the north-south ortion of the one-way couplet. While the original routing is delineated by white paint, the revised orth-south portion of the routing is faintly visible on the aerial view (Figure 13) taken in 1958.

Iraffic Data

During the "before" period, traffic volumes averaged 8,200 vehicles per day and the vehicle miles of travel for this period totaled $5,566,980$.

Due to wartime driving restrictions and gasoline rationing, traffic volumes in the "after" period were lower, the average being 6,040 vehicles per day. There were $4,100,556$ vehicle miles of travel during this period.

Travel time is a measure of congestion on a facility. During the "before" period it required 8.06 minutes to negotiate the facility in one direction, and after the one-way couplet was established the travel time was reduced to 6.54 minutes. This was a savings of 1.52 minutes, or in other words, a 19 percent reduction in travel time.

City of Eugene

BEFORE
AFTER

TABLE XI

ACCIDENT LISTING

Sixth-Seventh Avenue One-Way Couplet
Eugene

LEBANON

General

Prior to the establishment of the one-way couplet in the City of Lebanon, US20 was routed over Main Street as shown in Figure 15. Main Street was 36 feet in width from Carolina Street to the Lebanon-Santiam Canal Bridge, and 20 feet in width to the south of the bridge. The section of Main Street involved in this study was 0.67 miles in length. The sections of the city streets, Park and Carolina Streets, later to be incorporated into the one-way couplet, were 0.56 miles in length.

The Main-Park Street One-Way Couplet was established July 1, 1948. As illustrated in Figures 15 and 16, southbound traffic was routed over Main Street and northbound traffic was routed over Park Street and Carolina Street. The establishment of this one-way couplet required the construction of an extension of Park Street from the Lebanon-Santiam Canal to an intersection with Main Street. The Park-Carolina Street leg of the couplet was 0.77 miles in length, and was 44 feet in width between Ash and Grant Streets, 22 feet in width south of Oak Street, and 32 feet in width in the remaining sections. Parking was prohibited on the east side of Park Street throughout the 32 -foot sections and on the south side of Carolina Street.

For comparative purposes, the three-year period January 1, 1945 to December 31, 1947 was chosen for the "before" period, and the three-year period January 1, 1949 to December 31, 1951 was selected for the "after" period. It will be noted that the "after" period of study began six months after the oneway couplet was established.

Traffic Data

During the "before" period traffic volumes on Main Street averaged 5,465 vehicles per day. The average daily traffic on Park and Carolina Streets was 1,165 vehicles. There were $4,726,020$ vehicle miles of travel during this period, and the average daily traffic for all three streets was 6,440 vehicles.

Traffic volumes on Main Street, the southbound leg of the one-way couplet, averaged 4,375 vehicles per day during the "after" period. Traffic volumes were slightly lower on the northbound leg, the average being 4,255 vehicles per day. The average daily traffic for the one-way couplet during the "after" period was 8,630 vehicles, and the vehicle miles of travel totaled $6,796,061$.

During the "before" period, it required 1.86 minutes of travel time to negotiate one direction of the section of Main Street under consideration. After the one-way couplet was established the travel time on Main Street was reduced to 1.76 minutes. This was a savings of 0.10 minutes, or a 5.38 percent reduction.

HIGHWAY ROUTE BEFORE AND AFTER ESTABLISHMENT OF ONE WAY COUPLET
 City of Lebanon

YABLE XIIF

ACCIDENT LISTING

Main-Park Street One-Way Couplef
Lebanon

MEDFORD

General

Prior to the establishment of the Court Street, Central Avenue-Riverside Avenue One-Way Couplet, US99 was routed over Riverside Avenue in the City of Medford as shown in Figure 18. There was a traffic signal at the Main Street intersection. The section of Riverside Avenue involved in this study was 2.21 miles in length. Court Street and Central Avenue, later to become a part of the one-way couplet, served the core of the business district. There were traffic signals at the Sixth and Main Street intersections. The combined length of the sections of Court Street and Central Avenue was 2.28 miles.

The Court Street, Central Avenue-Riverside Avenue One-Way Couplet was established March 8, 1942. As iltustrated in Figures 18 and 19, northbound traffic was directed over Riverside Avenue and southbound traffic was routed via Court Street and Central Avenue. The length of the northbound leg of the one-way couplet was 2.21 miles, and the length of the southbound leg was 2.28 miles.

Adequate data for the three-year period prior to the establishment of the one-way couplet in Medford were not available. Therefore, the length of the "before" and "after" periods of study was limited to one year. The year 1941 was chosen as the "before" period, and 1943 was selected as the "after" period. It will be noted that the "after" period of study started about ten months after the one-way couplet was established.

Traffic Data

During the "before" period, the average daily traffic was 11,680 vehicles, and vehicle miles of travel amounted to $9,720,096$. Traffic volumes during the "after" period averaged 11,090 vehicles per day, and there were $9,079,229$ vehicle miles of travel. In all probability, the decrease in traffic volumes was due to wartime driving restrictions and gasoline rationing.

There were no travel time data available.

City of Medford

Figure 18

ACCIDENT LISTING

Court Street، Central Avenue-Riverside Avenue One-Way Couplet Medford

PENDLETON

General

Prior to the establishment of the Court-Dorian Avenue One-Way Couplet in Pendleton, US30 was routed via Court Avenue as shown in Figure 21. The section of Court Avenue considered was 1.23 miles in length. There were no traffic signals. Dorian Avenue, a parallel street one block south of Court Avenue which was later to become a part of the one-way couplet, was 1.04 miles in length. The difference in length was due to the fact that Dorian Avenue was terminated at S.W. 13th Street. There were no signalized intersections on Dorian Avenue either.

The Court-Dorian Avenue One-way Couplet was established on September 9, 1948, which date was shortly after the construction of an extension of Dorian Avenue to an intersection with Court Avenue, and the installation of traffic signals at the intersections of Court and Dorian Avenues with Main Street. As illustrated in Figures 21 and 22, westbound traffic was routed via Court Avenue and eastbound traffic was directed over Dorian Avenue. Each of these streets was 1.23 miles in length.

For comparative purposes, the 36 -month period from September 1, 1945 to August 31, 1948 was used for the "before" period, and the 36 -month period from January 1, 1949 to December 31, 1951 was chosen for the "after" period. The beginning date of the "after" period of study was scheduled so as to omit the first four months immediately following the opening of the one-way couplet from the study because it was felt that the data for these four months would not reflect a normal situation due to the changed driving requirements.

Traffic Data

Traffic volumes on Court Avenue during the "before" period averaged 4,405 vehicles per day and ranged from a high of 6,000 near Main Street to a low of 3,000 near the western terminus of the one-way couplet. Traffic volumes on Dorian Avenue averaged 2,395 vehicles per day, and varied from a high of 3,500 near Main Street to 1,000 near its western terminus. The average daily traffic for these two streets during the "before" period was 6,430 vehicles, and vehicle miles of travel amounted to $8,662,554$.

During the "after" period, traffic volumes on Court Avenue averaged 4,025 vehicles per day with a high of 6,000 near Main Street and a low of 2,500 near the western terminus of the one-way couplet. On Dorian Avenue traffic volumes were somewhat lower, averaging 3,530 vehicles per day, and ranging from a high of 5,000 near Main Street to a low of 2,500 near the western terminus. During the "after" period, the average daily traffic on the couplet was 7,555 vehicles, and vehicle miles of travel amounted to $10,168,585$.

During the "before" period it required 3.75 minutes travel time to negotiate the section in one direction. After the one-way couplet was established, travel time was reduced to 3.20 minutes. This amounted to a 15 percent reduction.

HIGHWAY ROUTE BEFORE AND AFTER establishment of one way couplet

City of Pendleton

TABLE XVII
ACCIDENT LISTING
Court-Dorian Avenue One-Way Couptet
Pendleton
 ther pred couplet and on the flanking street which later became a part of the oneway couplet. The after period includes all accidents which occured after the establishment of the one-way couplet during the period from January 1 , 1949 to December 31, 1951 on the foregoing sections and on newly constructed extensions.

REDMOND

General

US99 was routed on Sixth Street as shown in Figure 24, prior to the establishment of the FifthSixth Street One-Way Couplet. The section of Sixth Street involved in this study was 1.13 miles in length. The frontage on the three-block section between Evergreen and Highland Avenue was mainly occupied by business establishments. This section of Sixth Street was 40 feet in width and there was parallel parking on both sides of the street. Fifth Street, later to become a part of the one-way couplet, was a local service street terminated on the north near Greenwood Avenue and on the south by Highland Avenue. The over-all length of this street was 0.94 miles. There were no traffic signals on either street.

On June 30, 1951 the Fifth-Sixth Street One-Way Couplet was opened to traffic. As illustrated in Figures 24 and 25, northbound traffic was routed via Fifth Street and southbound traffic was routed over Sixth Street. The establishment of this one-way couplet required the construction of connections between Fifth and Sixth Streets at both ends of the couplet. The length of the northbound leg of the one-way couplet was 1.19 miles, and the southbound leg was 1.13 miles in length.

For comparison, the 36 -month period July 1, 1948 to June 30 , 1951 was chosen for the "before" period, and the 36 -month period July 1, 1952 to June 30,1955 was selected for the "after" period. In this case, the "after" period of study started one year after the one-way couplet was established.

Traffic Data

Traffic volumes on Fifth Street during the "before" period averaged 235 vehicles per day and varied from a high of 400 near Evergreen Avenue, to a low of 100 near Glacier Avenue. On Sixth Street, traffic volumes were considerably higher. The average daily traffic was 3,920 vehicles, and traffic volumes ranged from a high of 6,000 south of Evergreen Avenue to a low of 3,000 near the north city limits. These two streets combined had an average daily traffic of 4,120 vehicles during the "before" period and a vehicle mileage total of $5,097,243$.

During the "after" period traffice volumes on Fifth Street averaged 3,545 vehicles per day and ranged from a high of 4,500 near Evergreen Avenue to a low of 2,500 near the north city limits. On Sixth Street, the average daily traffic was 3,690 vehicles, with peak volumes comparable to those on Fifth Street. During the "after" period, the average daily traffic on the one-way couplet was 7,235 vehicles and there were $9,167,678$ vehicle miles of travel.

There were no travel time data available.

HIGHWAY ROUTE BEFORE AND AFTER ESTABLISHMENT OF ONE WAY COUPLET

TABLE XIX
ACCIDENT LISTING
Fifth-Sixth Street One-way Couplet
Redmond

SALEM

General

Before the existence of the one-way couplet in the City of Salem, US99E was routed over Commercial, Court, and Capitol Streets as illustrated in Figure 27. There were nine traffic signals along this routing. All other streets destined to become a part of the one-way couplet were open to travel in their entirety, with the exception of Liberty Street which was closed south of Superior Street.

The one-way couplet was established on October 6, 1951. As shown in Figures 27 and 28, northbound traffic was routed via Liberty, Center, and Capitol Streets. Southbound traffic was routed down Fairgrounds Road to Summer Street and thence on Summer, Marion, and Commercial Streets. Court Street and a portion of Capitol Street, previously a part of the route of US99E, then assumed the status of local service streets.

During the following two years, traffic signals were installed at key intersections on the one-way couplet. Each leg of the couplet was 3.18 miles in length.

The 12 -month period from October 7, 1950 to October 6, 1951 was chosen for the "before" period, and the 12 -month period from October 1, 1953 to September 30, 1954 was selected for the "after" period. It will be noted that the "after" period of study started about two years after the one-way couplet was established.

Traffic Data

During the "before" period, the average daily traffic on the highway ranged from 9,000 vehicles on Court Street to 17,000 on Capitol Street. On city streets that were later to become part of the one-way couplet, the average daily traffic varied from 2,000 vehicles on Marion Street to 12,000 on Center Street. Considering all streets in question as one corridor of travel, the average daily traffic was 19,600 vehicles, and the vehicle miles of travel totaled $22,800,705$.

The average daily traffic during the "after" period on the streets in question was more balanced. Capitol and Commercial Streets each carried approximately 10,000 vehicles per day, and Court, Marion, and Summer Streets each accommodated about 8,000 vehicles per day. Vehicle miles of travel amounted to $23,766,293$ during this period, and the average daily traffic for the traffic corridor was 20,500 vehicles.

There were no travel time data available.

HIGHWAI NUU.-
ESTABLISHMENT OF ONE WAY GOUPLET
City of Solem

Figure 27

ACCIDENT LISTING

Summer，Marion，Commercial－Capitol，Center，Liberty Street One－Way Couplet
Salem

SPRINGFIELD

-al
Prior to the establishment of the one-way couplet in the City of Springfield, US126 was routed Main Street as shown in Figure 30. Main Street was 46 feet in width from the Willamette River ge to Tenth Street and 20 feet in width east of Tenth Street. The section of Main Street involved us study was 1.42 miles in length, and it passed through the Central Business District. There was traffic signal, and parallel parking was in force.

The Main-South "A" Street One-Way Couplet was established November 6, 1953. As illustrated in ures 30 and 31 , westbound traffic was routed over Main Street, and eastbound traffic was routed over sth "A" Street. The establishment of this one-way couplet initially required the construction of uth "A" Street, and later, the installation of seven additional traffic signals. South "A" Street was i2 miles in length and 40 feet in width. Parallel parking was allowed throughout its entirety.

For comparative purposes, the 36 -month period November 1, 1950 to October 31, 1953 was chosen or the "before" period and the 36 -month period June 1, 1954 to May 31, 1957 was selected for the "after" reriod. It will be noted that the "after" period of study began approximately seven months after the oneway couplet was established. During this period, the new traffic signals were put in operation and motorists familiarized themselves with the new routing. For these reasons, the data for this period were not expected to reflect a normal situation, and therefore this seven-month period was omitted from the study.

Traffic Data

Traffic volumes on Main Street during the "before" period averaged 14,530 vehicles per day and ranged from a high of 18,000 near the Willamette River Bridge to a low of 13,000 near 19th Street. The total vehicle miles for the "before" period amounted to $22,597,880$. As mentioned hereinbefore, South "A" Street was nonexistent during the "before" period, thus the foregoing data represent total "before" data.

During the "after" period, traffic volumes on Main Street averaged 8,520 vehicles per day and ranged from 11,000 near Fifth Street to 7,000 near 19th Street, the eastern terminus of the one-way couplet. On South "A" Street traffic volumes were generally lower, averaging 8,280 vehicles per day and varying from 9,000 near the western terminus to 7,000 near the eastern terminus. The average daily traffic during the "after" period on the couplet was 16,800 vehicles, and there were $27,023.505$ vehicle miles of travel.

There were no travel time data available.

HIGHWAY ROUTE BEFORE AND AFTER ESTABLISHMENT OF ONE WAY COUPLET

City of Springfield

TABLE XXIII

ACCIDENT LISTING

Main-S. "A" Street One-Way Couplet Springfield

THE DALLES

General

Second Street was the designated route of US30 in the City of The Dailes as shown in Figure 33, prior to the existence of the Second-Third Street One-Way Couplet. That portion of Second Street involved in this study was 0.76 miles in length. Those portions of Lincoln and Third Streets, later to become a part of the one-way couplet, had a combined length of 0.72 miles. There were no traffic signals on any of these streets. During the latter part of the "before" period, work was started on The Dalles Dam which was located just north of The Dalles. This generated an increase in the city's population and a consequent increase in the number of road users.

Prior to the opening of the Second-Third Street One-Way Couplet, Third Street was extended eastward to a junction with Second Street, and channelizing islands designed to facilitate traffic movements to and from the one-way couplet were constructed at the intersection of Second and Lincoin Streets.

The one-way couplet was established on November 12, 1952. As shown in Figures 33 and 34, LincoIn and Third Street became the routing for eastbound traffic, and Second Street was designated as the route for westbound traffic. Shortly after the one-way couplet was opened to traffic, traffic signals were installed and put in operation at eight intersections, as illustrated in Figure 33. The eastbound leg of the one-way couplet is 0.83 miles in length, and the westbound leg is 0.76 miles in length.

The 36 -month period from November 1, 1949 to October 31,1952 was selected for the "before" period of study, and the 36 -month period from June 1, 1953 to May 31, 1956 was chosen as the "after" period. It will be noted that the "after" period of study started approximately six months after the one-way couplet was established.

Traffic Data

Traffic volumes on Second Street during the "before" period averaged 6,005 vehicles per day and ranged from a high of 7,000 just west of Federal Street to a low of 5,000 immediately east of Taylor Street. On Third Street, traffic volumes were considerably lower. The average daily traffic was 2,925 vehicles and varied from a high of 4,500 near Federal Street to a low of 1,000 near Taylor Street. The composite average daily traffic for both streets was 8,780 vehicles, and the over-all vehicle miles totaled $7,306,380$.

During the "after" period, traffic volumes on Second Street averaged 8,835 vehicles per day and ranged from a high of 11,000 just west of Federal Street to a low of 6,500 near Taylor Street. On Third Street, the average daily traffic was 8,460 vehicles with volume extremes comparable to those on Second Street. During this period of study the average daily traffic on the one-way couplet was 17,295 vehicles, and there were $15,041,989$ vehicle miles of travel.

There were no travel time data available.

Second-Third Street One-Way Couplet
 The Dalles

TILLAMOOK

General

US101 was routed through the City of Tillamook as shown in Figure 36 before the Main-Pacific Avenue One-Way Couplet was established. The portion of Main Avenue involved in this study was 0.79 miles in length. Pacific Avenue, a parallel street one block to the east which was later to become a part of the one-way couplet, extended from a junction with First Street on the north to a point just south of 12 th Street, an over-all distance of 0.55 miles. The one-block section of First Street considered was 0.04 miles in length. There were no traffic signals on any of these streets.

Considerable construction was necessary to provide a southerly terminus for the one-way couplet. This construction involved the extension of Main Avenue south beyond the city limits to the relocated line of the Tillamook-Pleasant Valley Section of US101, and the extension of Pacific Avenue south to an intersection with the Main Avenue extension. On September 29, 1950, the Main-Pacific Avenue One-Way Couplet was opened to traffic. As shown in Figures 36 and 37, northbound traffic traveled over Pacific Avenue and First Street, while southbound traffic was directed over Main Avenue. Each leg of the oneway couplet is 0.79 miles in length. Signals at the intersections of Main and Pacific Avenues with Third Street were not installed until over a year after the one-way couplet was established.

For comparative purposes, the 36 -month period from September 1, 1947 to August 31, 1950 was selected for the "before" period, and the 36 -month period from October 1, 1951 to September 30, 1954 was chosen for the "after" period. It will be noted that the "after" period of study started one year after the one-way couplet was established.

Traffic Data

Traffic volumes on Main Avenue during the "before" period averaged 4,815 vehicles per day and ranged from a high of 5,500 just north of Third Street to a low of 4,000 near the south city limits. Traffic on First Street and Pacific Avenue was appreciably lighter. The average daily traffic was 1,365 vehicles, ranging from a high of 2,500 on First Street to a low of 50 on Pacific Avenue near 11th Street. The average daily traffic for all streets combined was 5,835 vehicles, and there were $5,047,073$ vehicle miles of travel.

During the "after" period, the average daily traffic on Main Avenue was 3,350 vehicles. Traffic volumes on Main Avenue ranged from a high of 6,000 vehicles per day just north of Third Street to a low of 2,000 near the south city limits. On Pacific Avenue, traffic volumes averaged 3.525 vehicles per day and varied from a high of 6,000 north of Third Street to a low of 2,000 near the south city limits. During the "after" period, the average daily traffic on the one-way couplet was 6,875 vehicies, and the vehicle miles of travel totaled $5,947,507$.

During the "before" period it required 3.56 minutes to negotiate the section in one direction. This corresponds to a running speed of 13.3 MPH . After the one-way couplet was established travel time was reduced to 2.14 minutes, and the running speed was increased to 22.1 MPH . This was a savings of 1.42 minutes, or a 40 percent reduction in travel time.

HIGHWAY ROUTE BEFORE AND AFTER ESTABLISHMENT OF ONE WAY COUPLET

City of Tillamook

TABLE XXVII

ACCIDENT LISTING

Main-Pacific Avenue One-Way Couplet
 Tillamook

LOCATIONS City Tillanook	COLLISION TYPE													CLASSIF.					nemarks
	$\begin{aligned} & \stackrel{a}{9} \\ & \stackrel{y}{4} \\ & \frac{5}{4} \end{aligned}$	$\begin{aligned} & \text { E } \\ & 0 \\ & 0 \\ & 0 \\ & \text { wa } \\ & \hline \end{aligned}$							$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 . \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \hline \end{gathered}$				$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 3 \\ & \frac{7}{8} \\ & -1 \\ & \hline 1 \end{aligned}$	-	corn				
INTERSECTIONAL																			
Before	38	-	8	-	1.	50	3	-	1	8	1.	-	110	-	14	96	-	14	
After	41	-	14	-	5	64	7	1	2	6	6	-	146	-	17.	129	-	27	
NON- INTERSECTIIONAL																			
Before	-	2	12	9	14	9	48	-	-	-	5	-	99	$-$	1	98		1.	
After	-	1	15	1	21	5	34	-	3	1	4	$=$	85	-	6	79		7	
ALL ACCIDENTS																			
Before	38	2	20	9	15	59	51	-	$\underline{1}$	8	6.	-	209	-	15	194	-	15	
After	41	1.	29	1	26.	69	41.	1	5.		10		231		23	208		34	
1	The before period includes all accidents which occurred during the period from September 1, 1947 to August 31, 1950 between the termini of the one-way couplet on those streets which were a part of USlol before the establishment of the oneway couplet and on those streets which later hecame a part of the one-way couplet. The after period includes all accidents which occurred after the establishment of the ane-way couplet during the period from October 1, 1951 to September 30, 1954 on the foregoing sections and on newly constructed extensions.																		

publications of the oregon state highway commission

TECHNICAL BULLETINS

No. 1 Loading Tests on a New Composite-type Short-Span Highway Bridge Combining Concrete and Timber in Flexure, by Baldock and McCullough. 1933. (Revised May, 1941)

No. 2* Application of Freyssinet Method of Concrete Arch Construction to the Rogue River Bridge in Oregon by Gemeny and McCullough. 1933.
No. 3* Loading Tests on Steel Deck Plate Girder Bridge with Integral Concrete Floor by Paxson. 1934.

No. 4* Design of Waterway Areas for Bridges and Culverts, by McCullough. 1934.

No. 5
No. 6

No. 7

No. 8
No. 9
No. 10^{*}

No. 11
No. 12
No. 13
No. 14 The Derivation of Design Constants for Suspension Bridge Analysis, by McCullough, Paxson, and Smith. 1940.
No. 15 The Experimental Verification of Theory for Suspension Bridge Analysis, by McCullough, Paxson, and Rosecrans. 1942.
No. 16 Trans-Columbia River Interstate Bridge Studies, a Joint Report, by the Washington Department of Highways and the Oregon State Highway Department. 1944.
No. 17 The Effect of Surface Type, Alignment, and Traffic Congestion on Vehicular Fuel Consumption, by Beakey, Crandall, Klein, and Head. 1944,
No. 18 MuItiple-span Suspension Bridges, Development and Experimental Verification of Theories, by McCullough, Paxson, and Rosecrans. 1944.
No. 19 Manual of Instructions for Construction Department Employees, by Smith and Libby. 1946. (Revised 1953)

No. $20 \quad$ Standard Highway Spirals, by Libby. 1949.
No. 21
Highway Guard Fence, by Finkbiner. 1950.
No. 22 Sign Legibility Study, by Traffic Engineering Division. 1954.
No. 23 Safety Manual, by W. M. Strohmeyer. 1955.
No. 24 Manual on Uniform Traffic Control Devices for Streets and Highways, by Traffic Engineering Division, 1957.
No. 25 Spray Manual, by Maintenance Division, 1957.

[^1]
TECHNICAL REPORTS

Report of the Interim Committee appointed to study the Motor Transportation Act, by the Interim Committee. 1937.
No. 38-1 An Inventory of City Streets in Oregon, by Beakey, Van Scoy, and Walton. 1938.
No. 38-1A Addenda to an Inventory of City Streets in Oregon, by Beakey, Van Scoy, and Walton. 1938.

No. 38-2 Rural Road Inventory of the State-wide Highway Planning Survey, by Beakey, Van Scoy, and Walton. 1938.
No. 38-3 Motor Vehicle Allocation and Road Use Surveys of the State-wide Highway Planning Survey, by Beakey, Van Scoy, and Myers. 1938.
No. 38-4 Fiscal Survey of the State-wide Highway Planning Survey, by Beakey, Van Scoy, and Keef. 1938.
No. 38-5 Rural Traffic Survey of the State-wide Highway Planning Survey, by Beakey, Glenn, and Manning. 1938.
No. 38-5A* Annual Daily Traffic Density Tables of the Rural Traffic Survey, State-wide Highway Planning Survey (report accompanied by traffic station maps-price $\$ 5.00$), by Beakey, Glem, and Manning. 1938.
No. 38-6 Urban Traffic Survey (part I and part II), by Beakey, Glenn, and Manning. 1938.
No. 39-1 Data Supplementary to Interim Committee Report of January 1, 1937, by Beakey and Myers. 1939.
No. 39-2 A State-wide Survey of Aggregates, by Finkbiner. 1939.
No. 39-3* Notes on the Application of Soil Mechanics to Highway Excavations and Embankments, by Paxson and Smith. 1939.
No. 39-4 Offset Tables for Vertical Curves, by Swart. 1939.
No. 39-5 Skid-resistant Characteristics of Oregon Pavement Surfaces by Beakey, Klein, and Brown. 1939.

No. 39-6* Record of Road Costs and Earnings on the Oregon State Highway System for the Calendar Year 1937, by Probert and Bonnett. 1939.
No. 40-1 Traffic Density Tables for 1939, by Beakey and Manning. 1940.
No. 40-2 A Study of Expansion Joint Behavior in a Typical Western Oregon Pavement, by McCullough, Smith, and Webber. 1940.
No.40-3 Data Supplementary to Interim Committee Report of January 1, 1937, by Baldock, Beakey, and Myers. 1941.
No. 41-1 Traffic Density Tables for 1940, by Beakey and Manning. 1941.
No. 42-1 Traffic Density Tables for 1941, by Beakey and Manning. 1942.
No.42-2 Data Supplementary to Technical Bulletin No. 10, by McCullough and Myers. 1942.
No. 42-3 The Fees and Taxes Paid by the Road Users for the Highway Facilities Provided, by Baldock and McCullough. 1942.
No. 43-1 Manual of Standard Practice for Paving Inspectors, by Finkbiner and O'Neil. 1943.
No. 43-2 Manual of Standard Practice for Sampling Construction Materials, by Finkbiner. 1943.
No. 43-3 Traffic Density Tables for 1942, by Crandall and Stein. 1943.
No. 43-4 The Geometric Design of Highway Alignments and Highway Intersections, by Baldock. 1943.

No. 44-1 Traffic Density Tables for 1943, by Crandall and Stein. 1944.
No.44-2 Effect of Expansion Joint Spacing in Typical Concrete Pavements of Western Oregon, by Paxson and Richards. 1944.
No. 44-3 A Study of Rural Sidewalks, by Beakey, Crandall, and Head. 1944.
No. 44-4 Log Scale Measurements vs. Weight as a Measure for Load Regulations, by Paxson and Spaulding. 1944.
No. 45-1 Traffic Density Tables for 1944, by Crandall and Stein. 1945.
No. 46-1 Traffic Density Tables for 1945, by Crandall, Stein, and Gately. 1946.
No. 47-1 Traffic Density Tables for 1946, by Crandall and Stein. 1947.

[^2]No. 48-1 Traffic Density Tables for 1947, by Crandall and Stein. 1948.
No. 48-2* Motor Vehicle Traffic Accident Analysis Coding Manual, by Crandall, Head, and Taylor.
No. 49-1 Traffic Density Tables for 1948, by Crandall and Manning. 1949.
No. 49~2 1946 Portland Metropolitan Area Traffic Survey O-D Study. 1949.
No. 49-3 1946 Portland Metropolitan Area Traffic Survey Parking Study. 1949.
No. 50-1 Traffic Density Tables for 1949, by Crandall and Gately. 1950.
No. 50-2 1948 Traffic Accidents and Accident Rates by Crandall, Johnson, and Taylor. 1950.
No. 51-1 Traffic Volume Tables for 1950, by Crandall and Gately. 1951.
No. 51-2 1949 Traffic Accidents and Accident Rates, by Crandall, Johnson, and Tayior. 1951.
No. 52-1 Traffic Volume Tables for 1951, by Crandall and Gately, 1952.
No. 52-2 1950 Traffic Accident Rates, by Crandall, Johnson, and Taylor. 1952.
No. 52-3* Eugene-Springfield O-D Study for 1951, by Traffic Engineering Division.
No. 52-4 Eugene Parking Study for 1951, by Traffic Engineering Division.
No. 53-1 Traffic Volume Tables for 1952, by Traffic Engineering Division.
No. 53-2 1951 Traffic Accidents and Accident Rates, by Traffic Engineering Division.
No. 54-1* Traffic Volume Tables for 1953, by Traffic Engineering Division.
No. 54-2 1952 Traffic Accidents and Accident Rates, by Traffic Engineering Division.
No. 54-3 Traffic Survey Report, City of Albany 1953, by Traffic Engineering Division.
No. 54-4 Traffic Survey Report, City of Medford 1953, by Traffic Engineering Division.
No. 54-5 1953 Traffic Accidents and Accident Rates, by Traffic Engineering Division.
No. 55-1 Traffic Volume Tables for 1954, by Traffic Engineering Division.
No. 55-2* 1954 Traffic Accidents and Accident Rates, by Traffic Engineering Division.
No. 55-3 Accident Analysis Code Manual. Revised 1955, by Traffic Engineering Division.
No. 55-4 Traffic Survey Roseburg and Vicinity 1954, by Traffic Engineering Division.
No. 55-5 Freeway and Expressway System Portland Metropolitan Area 1955, by Traffic Engineering Division.
No. 55-6 Traffic Survey Grants Pass and Vicinity 1954, by Traffic Engineering Division.
No. 56-1 Traffic Volume Tables for 1955, by Traffic Engineering Division.
No. 56-2 . 1955 Traffic Accidents and Accident Rates, by Traffic Engineering Division.
No. 56-3 Relative Hazards at Railroad Grade Crossings on State and Federal Aid Highway Systems, by Traffic Engineering Division. 1956.
No. 56-4 Traffic Survey City of Pendleton, 1955, by Traffic Engineering Division.
No. 57-1 Traffic Volume Tables for 1956, by Traffic Engineering Division.
No. 57-2 1956 Traffic Accidents and Accident Rates, by Traffic Engineering Division.
No. 57-3 Traffic Survey City of The Dalles 1956, by Traffic Engineering Division,
No. 58-1* Traffic Volume Tables for 1957, by Traffic Engineering Division.
No. 58-2 1957 Traffic Accidents and Accident Rates, by Traffic Engineering Division.
No. 58-3 East Bank Freeway, Portland, 1958, by Construction Division.
No. 58-4 The Dalles By-Pass, 1958, by Construction Division.
No. 58-5 Vehicle Placement Study, 1955, by Traffic Engineering Division.
No. 58-6 Interstate Freeway, 1958, by Construction Division.
No. 59-1 Traffic Volume Tables for 1958, by Traffic Engineering Division.
No. 59-2 1958 Traffic Accidents and Accident Rates, by Traffic Engineering Division.
No. 59-3 The Stadium Freeway, 1958, by Construction Division.
No. 59-4 A Study of One-Way Street Routings on Urban Highways in Oregon, 1959, by Traffic Engineering Division.

[^3]
[^0]: (7) No data ayailable.
 (9) Not st gnificant.
 (a) Highly signiticant.
 (4) Signifleant.

[^1]: - Supply exhsusted.

[^2]: * Supply exhausted.

[^3]: *Supply exhausted.

